

OFFICE OF NAVAL RESEARCH Contract NOO014-76-C-0826 Task No. NR 056-625

TECHNICAL REPORT NO. 78-07

Reactions of Triply-bonded Dimetal Compounds.

Reversible Addition of Carbon Monoxide to a Hexakis(alkoxy)

dimolybdenum Compound. A Molecule with a

Carbonyl-bridged Metal-to-Metal Double Bond.

by M. H. Chisholm, 1 F. A. Cotton, 2

M. W. Extine² and R. L. Kelly¹

Prepared for Publication

in

Journal of the American Chemical Society

Departments of Chemistry

¹Princeton University,

Princeton, New Jersey 08540

and

²Texas A & M University

College Station, Texas 77843

January 4, 1978

Reproduction in whole or in part is permitted for any purpose of the United States Government Approved for Public Release: Distribution Unlimited

T. REPORT NUMBER	ORT DOCUMENTATION	PAGE	READ INSTRUCTION
			1 RECIPIENT'S CATALOG NUM
	Reactions of Triply	s-honded Nimetal	(9)
Compounds. Re	versible Addition of lkoxy)dimolybdenum	f Carbon Monoxide	Technical Report a PERIO
Molecule with Double Bond.	a Carbonyl-bridged		TR-78-67
M.H./Chisholm, R.L./Kelly	F.A.Cotton, M.W./E	ktine /	NØØ14-76-C-Ø826 NR 056-625
Department of		•	10. PROGRAM ELEMENT, PROJ AREA & WORK UNIT NUMBE
Princeton Univ Princeton, N.	회사 회의 하면 생각 내용 경우가 하고 하면 되었다면서 그렇게 하는 바로 하는 사람이 되었다면 하는 사람이 되었다.		11) 4 Jan 78/
Office of Nava			January 4, 1978
Department of	the Navy		13. NUMBER OF PAGES 2
14. MONITORING AGEN	ICY NAME & ADDRESS(II dillon	ent from Controlling Office)	18. SECURITY CLASS. (of this s
			15a. DECLASSIFICATION/DOWN
16. DISTRIBUTION STA	TEMENT (of this Report)		
Approved for	public release; dist	ribution unlimite	ed
			DDC
17. DISTRIBUTION STA	TEMENT (of the abetract enters	d in Block 20, if different fro	JAN 19 1978
	•		Discoleil A G
	NOTES		F
18. SUPPLEMENTARY			
18. SUPPLEMENTARY			
19. KEY WORDS (Contin	us on reverse side if necessary 1 Triple and Double	and identify by block number, Bonds, Molybdenut	n, Alkoxides,
19. KEY WORDS (Centin Metal-to-Metal Carbon Monoxid	Triple and Double	Bonds, Molybdenus	a, Alkoxides,
19. KEY WORDS (Centing Metal-to-Metal Carbon Monoxide Carbon M	Triple and Double de. or on reverse side if necessary a alkoxides, Mo ₂ (OR) to bon monoxide at room	Bonds, Molybdenus nd identity by block number) , which contain m m temperature and	, Alkoxides,
19. KEY WORDS (Centing Metal-to-Metal-Carbon Monoxide Carbon M	Triple and Double de. To on reverse side if necessary alkoxides, Mo (OR) to on monoxide at room een established for Mo (OBu	Bonds, Molybdenus ad identify by block mumber) , which contain m m temperature and R=Bu: + CO = Mo. (OBu	etal-to-metal triple 1 Atmos. A reversib
19. KEY WORDS (Centime Metal-to-Metal-to-Metal-to-Metal-Carbon Monoxide Metal-to-Metal Carbon Monoxide Metal-to-Metal-to	Triple and Double de. To on reverse side if necessary alkoxides, Mo (OR) to on monoxide at room een established for Mo (OBu	Bonds, Molybdenus ad identify by block mumber) , which contain m m temperature and R=Bu: + CO = Mo. (OBu	etal-to-metal triple
19. KEY WORDS (Centime Metal-to-Metal-to-Metal-to-Metal-Carbon Monoxide Metal-to-Metal Carbon Monoxide Metal-to-Metal-to	Triple and Double de. To on reverse side if necessary alkoxides, Mo (OR) to on monoxide at room een established for Mo (OBu	Bonds, Molybdenus Molybdenus	etal-to-metal triple 1 Atmos. A reversib

SECURITY CLASSIFICATION OF THIS PAGE (When Bate Entered)

is 2.489(1)A. In the presence of an excess of CO, Mo(CO) is ultimately formed along with other as yet, uncharacterized molybdenum containing compounds.

5/N 0102- LF- 014- 6601

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Reactions of Triply-bonded Dimetal Compounds. Reversible Addition of Carbon Monoxide to a Hexakis(alkoxy)dimolybdenum Compound. A Molecule with a Carbonyl-bridged Metal-to-Metal Double Bond.

Sir:

We report here our initial observations on a series of most remarkable reactions involving carbon monoxide and Mo₂(OR)₆ compounds, which contain unbridged metal-to-metal triple bonds. 1

Alkane solutions of Mo₂(OR)₆ compounds where R = Ma₃C, Me₂CH and Me₃CCH₂, rapidly absorb carbon monoxide at room temperature to give dark solutions.² Upon exposure to two equivalents of CO, crystalline compounds have been obtained merely by cooling the alkane solutions to <u>ca.</u> -10°C.

Black crystalline compounds of empirical formula Mo(OR)₃CO have been obtained for R = Me₂CH and Me₃CCH₂ and a preliminary X-ray investigation has shown that the isopropoxide is tetranuclear, Mo₄(OPr¹)₁₂(CO)₄. The IR spectrum of the latter compound shows four well-resolved and sharp bands of approximately equal intensity assignable to coordinated carbonyl ligands: 1957, 1882, 1837 and 1819 cm⁻¹. When R = Me₃C, a dark purple crystalline compound, Mo₂(OBu¹)₆CO, I, was obtained which showed only one IR band, at 1670 cm⁻¹, assignable to a carbonyl group.

All the new carbonyl compounds are thermally labile. I readily loses CO on heating in vacuo and Mo₂(OBu^t)₆ is recovered. Carbon monoxide is also lost in solution under a nitrogen purge or under vacuum. This establishes the reversibility of reaction 1 below.

$$Mo_2(OBu^t)_6 + CO \stackrel{?}{+} Mo_2(OBu^t)_6 CO$$
 (1)

The black crystalline compounds, $Mo_4(OR)_{12}(CO)_4$, where $R = Me_2CH$ and Me_3CCH_2 , yield $Mo(CO)_6$ at $50^{\circ}C$, 10^{-2} Torr and $Mo_2(OR)_8$ compounds at $80-100^{\circ}C$, 10^{-2} Torr. Other non-volatile products are as yet uncharacterized in these thermal decomposition reactions.

Upon exposure to an excess of CO (1 Atmos) Mo₂(OR)₆ compounds react further. For example, after exposing a hexane solution of Mo₂(OBu^t)₆ to an excess of CO (1 atmos) for 12 hr the solvent was stripped, leaving a black powdery residue which showed the following IR bands assignable to carbonyl groups: 2022m, 1985vs, four overlapping bands at ca. 1930, all strong, 1830w, 1690vw, 1670w and 1630w cm⁻¹. The band at 1985 cm⁻¹ is assignable to Mo(CO)₆ and even at room temperature, 1 atmos, this compound slowly sublimes out of the black residue. Thus it appears that formation of I represents merely the first step in a chain of reactions which leads to Mo(CO)₆ amongst other as yet uncharacterized products. We proceeded directly toward a full structural characterization of the novel carbonyl compound, I.

Crystals of I consist of discrete dinuclear molecules with the structure shown in Fig. 1. Here we omit, for the sake of clarity, the $(CH_3)_3C$ groups. Each molecule possesses a crystallographically imposed mirror plane containing 01, C1, O2 and O3 and bisecting the Mo-Mo bond. The virtual symmetry of the molecule is C_{2v} . The coordination polyhedron about each metal atom is a distorted square pyramid with the Mo to carbonyl carbon bond at the apex.

We believe the Mo-Mo bond has a formal bond order of 2. The molecule is diamagnetic and the electron counting for each molybdenum atom may be conducted as follows: the neutral Mo atom has 6 electrons, each terminal RO group contributes 1 as does the bridging CO group, and the pair of bridging RO groups contribute 3 electrons to each metal atom. Thus, before metal-metal

bond formation is considered, each metal atom has 12 electrons. To account readily for diamagnetism, an Mo-Mo bond of even order should be present. With a distance of 2.489(1)Å, the only reasonable conclusion is a bond order of 2.

Metal to metal bonds of orders 1, 3 and 4 are, of course, very numerous and well-known, but not many double bonds have been observed to date. For molybdenum there have not previously been any unambiguous cases except for that in Mo₂(OPr¹)₈, where the Mo-Mo distance, 2.523(1)A, is very similar to the one found here. It is noteworthy that in the isopropoxide also the metal atoms have formal 14-electron configurations, but the coordination polyhedron is a trigonal bipyramid.

In conclusion we emphasize the following:

- 1) This work provides the first synthesis and structural characterization of a compound in which a carbonyl ligand bridges a metal-to-metal double bond, as well as only the second unambiguous example of an Mo = Mo bond.
- 2) To our knowledge the reversible reaction 1 has but one anology, namely, the recently reported reversible CO insertion into a Pd-Pd single bond.

where X = C1, Br and dpm = Ph2PCH2PPh2.

3) The formation of Mo(CO)₆ under the extremely mild conditions reported here is quite remarkable. Indeed, the reaction between Mo₂(OR)₆ compounds and CO may prove synthetically useful for the synthesis of labelled compounds Mo(*CO)₆.

<u>Supplementary Material.</u> A Table (1 page) of atomic positional and thermal parameters. Ordering information is given on any current masthead page.

<u>Acknowledgements</u>. Support from the Office of Naval Research at Princeton and The Robert A. Welch Foundation at Texas A&M University is gratefully acknowledged.

Malcolm H, Chisholm*8 and Raymond L. Kelly Department of Chemistry Princeton University Princeton, N. J. 08540

and

F. Albert Cotton and Michael W. Extine Department of Chemistry Texas A&M University College Station, Texas 77843

REFERENCES

- M. H. Chisholm, F. A. Cotton, C. A. Murillo and W. W. Reichert, <u>Inorg. Chem.</u>, <u>16</u>, 1801 (1977).
- 2. Additions were made using standard vacuum line techniques.
- 3. For Mo(OCHMe,) CO, Anal calcd (found): C, 39.88(39.88); H, 7.03(7.06).
- 4. Crystal data for Mo. (0-t-Bu) (CO): a = 17.827(3), b = 9.335(2), c = 19.447(4)A, α = β = γ = 90.00°, V = 3236(1)A³, Z = 4. Space group C mcα1 (No. 36). Unique data (1532 reflections) having 0.0°<20 (MoKα) \$50.0° were collected at 22°C using MoKα radiation (α = 0.710730A) and the 1237 reflections having I>3σ(I) were retained as observed. The structure was solved using standard heavy atom methods and refined to convergence utilizing anisotropic thermal parameters for molybdenum and oxygen atoms and isotropic thermal parameters for the carbon atoms. Hydrogen atoms were not located. Final residuals are R = 0.067 and R = 0.085; the esd of an observation of unit weight was 1.958.
- 5. F. A. Cotton, J. Less-Common Metals, 54, 3 (1977).
- M. H. Chisholm, R. L. Kelly, W. W. Reichert, F. A. Cotton and M. W. Extine, J. Amer. Chem. Soc., 100, xxx (1978).
- A. L. Balch, L. S. Benner, H. Hope and M. M. Olmstadd,
 J. Amer. Chem. Soc., 99, 5503 (1977).
- 8. Alfred P. Sloan Fellow, 1976-78.

Figure 1. A view of the coordination goemetry of I, Mo₂(OBu^t)₆(CO), showing the main internuclear distances. Each atom is represented by its ellipsoid of thermal vibration, scaled to enclose 40% of the electron density. The tertiary butyl groups are omitted for clarity.

POSITIONAL AND THERMAL PARAMETERS AND THEIR ESTIMATED STANDARD DEVIATIONS.

						The state of the s			
ATOM	×1	> !	NI	8(1.1)	4 B(2.2)	8(3.3)	9(1.2)	B(1,3)	8(2.3)
2	-9.07006(5)	-0.07006(5) -0.26838(8)	-0.2560(8)	0.00236(3)	0.00649(8)	0.00163(2)	8.88163(2) -8.88889(9) -8.8882(1)	-8.0002(1)	-0.8661(3)
5	8.0000(8)	-0.557(1)	-0.2891(8)	9.0044(6)	0.007(1)	0.0034(4)	0.000(0)	0.0000(0)	0.0018(15)
20	0.0000(0)	-0.187(1)	-0.1731(6)	0.0030(5)	0.010(2)	0.0014(3)	(0)000'0	0.0000(0)	-0.6012(12)
83	0.0000(8)	-0.121(1)	-0.2971(7)	6.0028(4)	0.006(1)	0.0021(3)	0.000(8)	0.00000	0.0011(12)
3	-0.1357(6)	-0.279(1)	-0.3260(5)	0.0034(3)	0.010(1)	0.0017(2)	-0.002(1)	-0.0017(5)	0.0009(9)
8	-6.1337(5)	-0.359(1)	-9.1867(5)	0.0027(3)	0.011(1)	0.0023(3)	-6.881(1)	0.0012(5)	-0.0003(10)
5	0.0000(0) -0.432(2)	-0.432(2)	-0.2738(9)	2.8(3)					
23	0.6066(0) -0.149(2)	-0.149(2)	-0.1040(12)	4.16.40					
8	0.0000(0) -0.279(3)	-0.279(3)	-8.8586(16)	6.2(6)					
3	-0.0693(10) -0.058(3)	-0.058(3)	-0.0875(12)	6.8(5)					
S	0.8666(8)	0.034(2)	-6.3847(11)	3.9(4)				•=	
93	0.0000(0)	0.066(4)	-0.3785(20)	9.1(10)					
23	0.0684(11)	0.094(2)	-0.2720(10)	6.3(5)					
8	0.1554(10) -0.323(2)	-0.323(2)	-0.3940(9)	5.8(3)			,		
63	-0.1227(13) -0.467(3)	-0.467(3)	-0.4065(12)	7.8(5)					
C10	-0.2431(13) -0.338(3)	-0.338(3)	-0.3919(13)	7.5(5)					
===	-0.1360(21) -0.202(4)	-0.202(4)	-0.4422(19)	18.8(8)					
C12	0.1689(8) -0.483(2)	-0.483(2)	-0.1577(8)	4.1(3)					
C13	-0.2171(10) -0.434(2)	-0.434(2)	-0.6991(11)	5.9(4)					
C14	-0.2193(13) -0.541(3)	-0.541(3)	-0.2175(12)	8.8(6)					
513	-0.1129(11) -0.593(2)	-0.593(2)	-0.1396(9)	5.5(4)					

EXP[-(B(1,1)*H*H + B(2,2)*K*K + B(3,3)*L*L + B(1,2)*H*K + B(1,3)*H*L + B(2,3)*K*L)]. THE FORM OF THE ANISOTROPIC THERMAL PARAMETER IS:

No. Copies	No. Copies
Office of Navel Research Arlington, Virginia 22217 Attn: Code 472 2	Defense Documentation Center Building 5, Cameron Station Alexandria, Virginia 22314 12
Office of Naval Research Arlington, Virginia 22217 Attn: Code 1021P 1 6	U.S. Army Research Office P.O. Box 12211 Research Triangle Park, N.C. 27709 Attn: CRD-AA-IP 1
ONR Branch Office 536 S. Clark Street Chicago, Illipois 60605 Attn: Dr. Jerry Smith	Naval Ocean Systems Center San Diego, California 92152 Attn: Mr. Joe McCartney 1
ONR Branch Office 715 Broadway New York, New York 10003 Attn: Scientific Dept. 1	Naval Weapons Center China Lake, California 93555 Attn: Head, Chemistry Division 1
ONR Branch Office 1030 East Green Street Pasadena, California 91105 Attn: Dr. R. J. Marcus 1	Maval Civil Engineering Laboratory Port Hueneme, California 93041 Attn: Mr. W. S. Haynes
ONR Branch Office San Francisco Area Office One Hallidie Plaza San Francisco, Calif. 94102 Attn: Dr. Phillip A. Miller	Professor O. Heinz Department of Physics & Chemistry Naval Postgraduate School Monterey, California 93940
ONR Branch Office 495 Summer Street Boston, Massachusetts 02210 Attn: Dr. L. H. Peebles 1	Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380
Director, Naval Research Laboratory Washington, D.C. 20390 Attn: Code 6100	Office of Naval Research Arlington, Virginia 22217 Attn: Dr. Richard S. Miller 1
The Asst. Secretary of the Navy (R&D) Department of the Navy Room 4E736, Pentagon Washington, D.C. 20350	

Commander, Naval Air Systems Command Department of the Navy Washington, D.C. 20360 Attn: Code 310C (H. Rosenwasser) 1

lo.	Copies	No. Copt	2
Dr. M. A. El-Sayed University of California Department of Chemistry Los Angeles, California 90024	1	Dr. G. B. Schuster University of Illinois Chemistry Department Urbana, Illinois 61801	1
Dr. M. W. Windsor Washington State University Department of Chemistry Pullmen, Washington 99163	1	Dr. E. M. Eyring University of Utah Department of Chemistry Salt Lake_City, Utah	1
Dr. E. R. Bernstein Colorado State University Department of Chemistry Fort Collins, Colorado 80521	1	Dr. A. Adamson University of Southern California Department of Chemistry Los Angeles, California 90007	1
Dr. C. A. Heller Naval Weapons Center Code 6059 China Lake, California 93555	1	Dr. M. S. Wrighton Massachusetts Institute of Technolog Department of Chemistry Cambridge, Massachusetts 02139	ay 1
Dr. M. H. Chisnoim Princeton University Department of Chemistry Princeton, New Jersey 08540	1	Dr. M. Rauhut American Cyanamid Company Chemical Research Division Bound Brook, New Jersey 08805	1
Dr. J. R. MacDonald Naval Research Laboratory Chemistry Division Code 6110 Washington, D.C. 20375	1		

No. Copies

Dr. D. A. Vroom IRT P.O. Box 80817 San Diego, California 92138	1
Dr. G. A. Somorjai University of California Department of Chemistry Berkeley, California 94720	1
Dr. L. N. Jarvis Surface Chemistry Division 4555 Overlook Avenue, S.W. Washington, Q.C. 20375	1
Or. W. M. Risen, Jr. Brown University Department of Chemistry Providence, Rhode Island 02912	
Br. H. H. Chrisholm Princeton University Chemistry Department Princeton, New Jersey 00540	L
Dr. J. B. Hudson Rensselaer Polytechnic Institute Materials Division Troy, New York 12181	1
Dr. John T. Yates National Bureau of Standards Department of Commerce Surface Chemistry Section Washington, D.C. 20234	1
Dr. Theodore E. Madey Department of Commerce National Bureau of Standards Surface Chemistry Section Washington, D.C. 20234	1
Dr. J. M. White University of Texas Department of Chemistry Austin, Texas 78712	1

Or. R. W. Vaughan California Institute of Technology Division of Chemistry & Chemical Engineering Pasadena, California 91125

Dr. Keith H. Johnson Massachusetts Institute of Technology Department of Metallurgy and Materials Science Cambridge, Massachusetts 02139

Dr. M. S. Wrighton Massachusetts Institute of Technology Department of Chemistry Cambridge, Massachusetts 02139

Dr. J. E. Demuth IBM Corp. Thomas J. Watson Research Center P.O. Box 218 Yorktown Heights, New York 10598

Dr. C. P. Flynn University of Illinois Department of Physics Urbana, Illinois 61801

Dr. W. Kohn University of California (San Diego) Department of Physics La Jolla, California 92037

Dr. R. L. Park Director, Center of Materials Research University of Maryland College Park, Maryland 20742

. Mo. Capies	No. Co
Dr. W. T. Peria Electrical Engineering Department University of Hinnesota Hinneapolis, Hinnesota 55455	Dr. Leonard Wharton James Franck Institute Department of Chemistry 5640 Ellis Avenue Chicago, Illinois 60637
Dr. Narkis Tzoar City University of New York Convent Avenue at 138th Street New York, New York 10031	Dr. M. G. Lagally Department of Metallurgical and Mining Engineering University of Wisconsin
Dr. Chia-wei Woo Northwestern University Department of Physics Evanston, I71 inois 60201 1	Medison, Wisconsin 53706 Dr. Robert Gomer James Franck Institute Department of Chemistry
Dr. D. G. Mattis Yeshiva University Physics Department Amsterdam Avenue & 185th Street	5640 Ellis Avenue Chicago, Illinois 60637 Dr. R. F. Wallis
New York, New York 10033 1 Dr. Robert M. Hexter University of Minnesota	University of California (Irvine) Department of Physics Irvine, California 92664
Department of Chemistry Minneapolis, Minnesota 55455. 1	

No. Copies	·No. Copies
Dr. R. M. Grimes University of Virginia Department of Chemistry Charlottesville, Virginia 22901 1	Dr. W. Hatfield University of North Carolina Department of Chemistry Chapel Hill, North Carolina 27514
Dr. M. Tsutsui Texas AAM University Department of Chemistry College Station, Texas 77843 1	Dr. D. Seyferth Massachusetts Institute of Technology Department of Chemistry Cambridge, Massachusetts 02139
Dr. G. Quicksall Georgetown University Department of Chemistry 37th & O Streets Washington, D.C. 20007	Br. H. H. Chrisholm -Princeton University -Sepertment of Chamistry -Princeton, New Jersey 08940
Dr. M. F. Hearthorne University of California Department of Chemistry Los Angeles, California 90024 7	Or. B. Foxman Brandeis University Department of Chemistry Waltham, Massachusetts 02154
Or. D. B. Brown University of Vermont Department of Chamistry Burlington, Vermont 05401 1	Dr. T. Marks Northwestern University Department of Chumistry Evanston, Illinois 60201 1
Or. W. B. Fox Navel Research Laboratory Chemistry Division Code 6730	Dr. G. Geoffrey Pennsylvania State University Department of Chemistry University Park, Pennsylvania 16802
Weshington, D.C. 20375 1 Dr. J. Adcock University of Tennessee Department of Chemistry Knoxyille, Tennessee 37916 1	Or. J. Zuckerman University of Oklahoma Department of Chemistry Norman, Oklahoma 73019
Or. A. Cowley University of Texas Department of Chemistry Austin, Texas 78712 1	